A geotermikus energia
A geotermikus (régebben geotermális) energia a Földből származó hőenergia, amely nagyrészt a földkéregben természetesen előforduló, hosszú felezési idejű radioaktív elemek bomlási hőjéből származik. [1] A geotermikus energiát megújuló energiaforrásnak tekintjük, mivel gyakorlati szempontból kimeríthetetlen és a bolygónk élete alatt mindig rendelkezésre fog állni.
A Föld belsejéből származó hőenergia-áramlást kifejező mennyiség a hőáram, melynek eloszlása nem egyenletes a felszínen. A világátlag 60 mW/m2, ezzel szemben Magyarországon ez az érték 90-100 mW/m2, ami jelentősen meghaladja a kontinentális átlagértéket is.
Egy másik fontos mutató a geotermikus gradiens, ami a felszín alatti hőmérséklet növekedését adja meg a lefelé megtett távolság függvényében. Magyarországon az átlagértéke 42-45 °C/km, de egyes helyeken eléri a 100°C/km-t. [2] Ezek az értékek kiemelkedőek a kontinentális Európa területén (az európai átlag 30-33 °C/km).
A geotermikus energia felhasználása
Geotermikus hőszivattyú
Talajba fektetett hőszivattyúk esetén a talaj hőjét, vagy hőtározó képességét használjuk ki valamilyen módon, ezzel javítva a hőszivattyú COP értékét alacsony környezeti hőmérséklet esetén. Magyarországon hozzávetőlegesen 6500 földhőt használó hőszivattyú üzemel 150 GWh éves termeléssel. [7]
Termálvízkutak
A legtöbb geotermikus energiát hasznosító berendezés termálkutakból nyeri a működéséhez szükséges hőenergiát. Ezekből a kutakból nyert energiát viszont csak akkor tekinthetjük megújulónak, ha a termálvíz felhasználása után gondoskodnak annak a visszasajtolásáról is. Ez azért fontos, mert ennek hiányában a rezervoárok kifogyhatnak, ha a természetes, porózus kőzeteken keresztüli esővíz visszaáramlás, mértéke kisebb, mint a kitermelés, vagy talajmozgások alakulhatnak ki a kőzetrétegek instabilitása miatt.
Magyarországon jelenleg több mint 1600 termálvízforrás működik [3], amik közvetlenül hő formájában vannak használva. Az országban kiépült 93 távhő rendszer közül 23-ban használnak fel geotermikus eredetű energiát, melyek összesített teljesítménye 223 MW. 2017-ben a 35 PJ távhőtermelésből 2,4 PJ-t részesedése volt a geotermikus forrásoknak. [4] A távhő mellett a balneológiai, és üvegházfűtési felhasználások a legjelentősebbek. 2018-ban az összes primer energiafelhasználás 1 %-át, 5,6 PJ-t tett ki a geotermikus energia. [5]
Erőművi felhasználás
Hazánkban az egyetlen geotermikus forrásból villamos-energiát előállító erőmű Turán épült, és 2,7 MW beépített elektromos teljesítménnyel rendelkezik. [6] Ez országos szinten nagyon szerény teljesítmény, de már tervezés alatt állnak új, több tíz MW-os egységek is. Ahhoz, hogy megértsük ezen erőművek lehetőségeit és hátrányait érdemes megismerkedni a geotermikus energia átalakítására tervezett erőművi technológiákkal.
Száraz gőz erőmű
Az első geotermikus erőművek (Olaszország 1904) száraz gőz elven működtek. A túlhevített 180-200°C-os gőz éri el a felszínt, ami szűrés után turbinán expandál, ezáltal munkát végez. Ez a típusú rendszer a gőz-dominált területek esetén alkalmazható, amikor a gőzhasznosítást semmilyen folyadék nem zavarja, de általában a folyadék-dominált mezők sokkal elterjedtebbek.
Single flash, double flash erőművek
A flash típusú erőművek abban különböznek a száraz gőztől, hogy a kutakban felszívott közeg nagynyomású víz, vagy nedves gőz. Jellemzően magas hőmérsékletű, 170 °C fölötti forrás szükséges az ilyen rendszerek kiépítéséhez.
A double flash annyiban tér el a single flash technológiától, hogy a kezdeti nagynyomású befecskendezés után visszamaradt folyadék egy alacsonyabb nyomású tartályba áramlik, ahol egy újabb nyomás csökkentés hatására addícionális gőzzé alakul. Az így keletkezett gőz keveredik a nagy nyomású turbinát elhagyó gőzzel és a kettő együtt egy újabb turbinát hajt meg, vagy a turbina előtt találkozik az előzőleg leválasztott gőzzel, így növelve a hatásfokot.
Bináris ciklusú (ORC, Kalina) erőművek
A bináris ciklusú erőműveknél nem a vízgőz hajtja a turbinát, hanem egy másik, alacsonyabb forráspontú munkaközeg. Nagy előnye, hogy 70-130 °C hőmérsékletű forrásoknál már alkalmazható, azonban a hatásfoka a kisebb vízhőmérséklet miatt alacsonyabb az előbb említett típusoknál. Az ORC körfolyamatnál a munkaközeg szerves, egykomponensű, míg a Kalina körfolyamatnál kettős közeget, általában az ammónia vizes oldatát használják. Utóbbi előnye az ORC-hez képest a nagyobb hatásfok, hátránya a bonyolultabb szabályozás, és a nagyobb beruházási költség.
EGS – Továbbfejlesztett geotermális rendszer
Az EGS erőművek sajátossága a mesterséges rezervoár. A vizet mesterségesen kell lejuttatni a forró (min. 200 °C) kőzetrepedések közé, majd újra felszínre hozni azt, hogy a korábban tárgyalt módszerek egyikével energiát nyerjünk ki belőle. Előnye, hogy szinte bárhol alkalmazható, mivel nem szükséges termálvízforrás, hátránya, hogy nagyon pontos geológiai ismeretekkel kell rendelkeznünk a repedéshálózat létrehozásához, és a fúrási költségek is magasak a nagy mélység miatt.
A geotermia jövője Magyarországon
Magyarország kiváló geotermikus adottságokkal rendelkezik, amit eddig túlnyomó többségében csak hőenergia előállítására használt fel. Nagy előny, hogy a szénhidrogénkutatási mélyfúrások miatt sok földtani adat és nagyszámú termálvízforrás áll a rendelkezésünkre.
Bíztató jel, hogy a villamos-energia termelési lehetőségek kutatására és kiaknázására a dél-magyarországi Battonyán épül egy EGS-típusú erőmű, mely részben az Európai Unió támogatásával valósul meg. Az erőmű 11,8 MW elektromos és további 62 MW hőteljesítménnyel fog rendelkezni. Ha az EGS technológia beválik, az kedvező helyzetbe hozhatja Magyarországot, mert sok területen található a technológiának kedvező kőzettípus magas hőmérséklettel párosítva.
További nagy segítség lehet a geotermia energetikai elterjedésében, ha valóban létrejön a Nemzeti Energiastratégiában említett Geotermikus Kutatási Kockázati Alap. Ezzel ugyanis a beruházások egyik legjelentősebb költségének: a fúrásnak a pénzügyi kockázata jelentősen csökkenne, így várhatóan több befektetőt tudna vonzani a szektor.
Természetesen a kapcsolt villamosenergia-termelésnek vannak gyakorlati korlátai. A fenntarthatóság elérésében és hazánk importfüggőségének csökkentésében azonban jelentős szerepet játszhat a geotermikus energia, hiszen rengeteg területen hasznosítható, karbonsemleges hő- és villamosenergia előállítását teszi lehetővé.
Zsiborás Zalán Tas
MET IT
BME GPK Energetikai mérnök BSc
Források:
[1] Turcotte, D. L. (2002), „4”, Geodynamics (2 ed.), Cambridge, England, UK: Cambridge University Press, pp. 136–137, ISBN 978-0-521-66624-4
[2] Dövényi P, Geothermal Conditions of Hungary, 1983
[3] Dr. Anikó Nóra Tóth, The Geothermal Atlas of Hungary, 2016
[4] MEKH, A MAGYAR TÁVHŐSZEKTOR 2017. ÉVI ADATAI, 2017
[5] MEKH, 2019
[6] http://metit.hu/blog/2018/08/28/uzemlatogatas-a-turai-geotermikus-eromuben/
[7] Annamária Nádor, Geothermal Energy Use, Country Update for Hungary, 2019